Some methodological issues on programme evaluation/Impact assessment Linxiu Zhang Center for Chinese Agricultural Policy Chinese Academy of Sciences CAU, Sept.24, 2007	Content of presentation - Introduction - Evaluation methods - Analytical methods - PScore, DID - Data collection - Sampling - Survey - Example of method application
Objective - Measure the impact of a policy reform or intervention on well-defined outcome variables - Examples: - Childcare subsidy _ child exam results - Targeted training program - employment duration, earnings - HPAI Outbreaks - impact on rural household livestock income or animal vaccination behaviour	example - Impact assessment of parents' migration on child school performance in rural China Objective: Measure parents' migration decision on child's exam results
Problems in programme evaluation - Missing data problem: - Each person is either in the program or not (not BOTH): a child is either in a parent migrating family or non-migrating family - There would be no evaluation problem if we can observe the outcome for those in the program had they NOT: if we have one child's exam results in both cases- during parents migrating period and not migrating period - Central issue: how to construct counterfactual.	Selection Bias - $E\left(Y_{1} \mid P=1\right)-E\left(Y_{0} \mid P=0\right)$ $-P$: whether parents migrated or not, $1=y e s, 0=$ no - Y_{1} : treated outcome - Y_{0} : untreated outcome - Add and subtract $E(Y 0 \mid P=1)$, we have $\left\{E\left(Y_{1} \mid P=1\right)-E(Y 0 \mid P=1)\right\}+\{E(Y 0 \mid P=1)-E(Y \mid P=0)\}$ - Average treatment effect on the treated Selecton bias If $E(Y o \mid P=1) \neq E(Y 0 \mid P=0)$: Selection bias: $E(Y o \mid P=1)-E(Y 0 \mid P=0)$

Evaluation Methods

- Randomized experiments
- Quasi-experiments: natural experiments

Identification with a randomized experiment

- Provides the correct counterfactual
- eliminates self--selection as a source of bias
- With randomized experiments:
- Programme impacts: $\hat{d}=E(Y \mid$ Treated $)-E(Y \mid$ Control $)$
- In regression:

$$
Y_{i}=\alpha+d * P_{i}+\varepsilon_{i}
$$

- Drawbacks of randomized experiments

Randomized experiments

- Most convincing: there's a control group that is a random subset of the eligible population
- Randomized experiment in development Progresa (Mexico) Vouchers for private schooling in Columbia ((Angrist et al. AER 2003)
Merit scholarship program for girls in Kenya (Kremer, Miguel, and Thornton 2003)
Audit program of municipal expenditures in Brazil (Finan and Feraz 2006)

2. Quasi-experiment/Natural Experiment

- Considers policy/program itself as an experiment and try to find a comparable experiment control group
- Identification problem: selection bias
- Programme participation not random
- Earlier example:
- Whether a child coming from a migrating family is not random
- intuition: There is something systematically different about a child who is from a migration family (treated) compared to a child who is from a non-migration family (control), which is correlated with counterfactual outcome
- implicaflon: biased impact measure

Identification strategy

- Depends on what type of data you have:
- Singer cross-section (after programme implementation)
- IV
- Two-step Heckman selection estimator
- Matching (Propensity-Score Matching)
- Panel data (before-after programme)/multiple crosssection
- difference-in-differences
- difference-in-difference matching
- Fixed effects (> two periods)

Identification strategy(2)

- if two groups are systematically different in characteristics, let's control for them as much as possible.
- Propensity score matching

Controls for observable characteristics
Only use outcome data for after program

- Difference-in-differences
differences out some unobservable characteristics Utilize outcome data before-after program
- Difference-in-differences matching method

Combines the two approaches
Controls for observable and unobservable characteristics

Brief introduction on method - Propensity Score Matching Method - Difference in differences	Propensity Score Matching Method - Idea of matching - Directly compares individuals with similar values of observable characteristics (X i - PSM compares individuals with similar probability of participation - P-score $S\left(X_{i}\right)=\operatorname{Pr}\left(P=1 \mid X_{i}\right)$ - Conditional Independence Assumption (CIA): - Matching in general: $\quad\left(Y_{0} \perp P\right) \mid X$ - PSM: $\quad\left(Y_{0} \perp P\right) \mid S(X)$
More Words on PSM - Inexact Matching - It maps X into some lower dimension measure (index) that captures all important information in X , aka P-score - P -score: the probability of receiving treatment conditional on entire space spanned by observables - The P-Score Theorem: If P is randomly assigned conditional on X, then P also is randomly assigned condition on $\mathrm{S}(\mathrm{X})$. $\left(Y_{0 i}, Y_{1 i}\right) \perp P_{i}\left\|X_{i} \Rightarrow\left(Y_{0 i}, Y_{1 i}\right) \perp P_{i}\right\| S\left(X_{i}\right)$	How PSM works Propensity scoring: Step 1: Estimate binary choice model that explains participation Step 2: Obtain the predicted probability of participation "propensity score" Step 3: Match participant and non-participant with similar propensity score Step 4: Compare the weighted averages
Balancing property check of P-Score: stop adjusting the logit/probit model when the X's are similar for i with similar P-score - Stratify sample into quintile blocks based on predicted p -score - Within each quintile, compare $\bar{X}_{P=0}, \bar{X}_{P=1}$, test the difference using t-test - If all tests (>95\% of tests) are insignificant, then conclude that the Logit/Probit function is "balancing" the observables (X), that is, statistically indistinguishable - If covariate k in particular is not balanced for small blocks, divide them into smaller blocks and reevaluate - If covariate k is not balanced for all blocks, modify the functional form by adding interactions or higher order polynomials in covariate k - Stop change function form when you fail to reject more than 95% of the time	Matching method - One-to-one matching - Nearest neighbour matching - With/without replacement - Caliper matching: avoids "bad" matching by setting maximum distance allowed (2-5\%) - One-to-multiple matching - Kernel and local linear matching (non-parametric parametric methods) - weights depend on the distance between each comparison group observation and the participant observation for which the counterfactual is being constructed

Advantages and limitations

- Advantages of matching (vs. linear regressions)
- Clarifies whether or not comparable untreated observations are available for each treated observation
- avoids identifying effects solely by projections into regions where there are bad or no matches
- Larger weights on untreated observations similar to each treated units when calculating the expected counterfactual for each treated observation (OLS uses all untreated units)
- Limitation
- CIA: Assumes that participation and outcome are based on observable characteristics (XI)
- Might not be able to find the right counterfactual for all participants - Requires lots of variables

Difference In Differences

- Compares before--after changes of participants vs. before--after change of non--participants
- Any common trends get differenced out.
- limitation:
- only common trends between two groups get differenced out
- We control for base value of Yi, observables, and village fixed effects

$$
\begin{aligned}
& \Delta Y_{i}=\alpha+d P_{i}+\beta_{Y_{i 0}} Y_{i 0}+\beta_{X_{i 0}} X_{i 0}+\gamma_{\text {town }}+\varepsilon_{i} \\
& \text { where } \\
& \Delta Y_{i}=Y_{i 1}-\Delta Y_{i 0}
\end{aligned}
$$

Two basic assumptions of DID

- unobserved differences does not change over time, in other words, treatment group and control group have the same trend
- Before treatment, the basic characteristics of the two groups are similar in terms of the mean。
$-X$ is a vector of covariates
- $P_{i 1}=1$ if $t=1$ (post-program) and the pupil is a "treated"
- $\mathrm{T}=1$ if $\mathrm{t}=1$ (post-program)
- Pit=1 if the pupil is a "treated"

Problems with DID

- You can still have selection on observables.

Potentially, you could have

- Omitted variable bias
- Incorrect functional form (matching methods might be able t deal with this type of problem)
- You can still have selection on unobservables
- Correlation in unobservables that determine program participation
- Policy endogeneity: policy adoption is correlated with province-level trends in outcome or expectations about outcome. (need IV)
- Inference problem: DID model uses panel data, we know panel data's OLS standard error is likely to be too low, i.e., $\mathrm{t}=2.00$ might be too loose, you mistakenl reject Ho .

Difference in differences

	After	before	after-before
participation	A	B	A-B
control	C	D	C-D
			d=(A-B)-(C-D)

Data collection - Sampling - Survey instruments	Sampling - To select samples with representativeness - To include different population groups - Participating groups - Control groups
Survey - Information for different periods - Before - after - Information for different groups - Participating - non-participating	Example of impact assessment - Impact of parents migration on child grades
Migration, Mentoring and Mothers: The Effect of Migration on Children' Educational Performance in Rural China	Introduction Migration is one of the main ways of alleviating poverty in developing countries Migration itself, however, is not costless. - For example: There may be an adverse effect of migration on the educational achievement of the children of migrants (McKenzie et al. on Mexico)

Overall Increase in Off-farm Work	Migration-fastest growing segment
Summary: Migration in China - Migration is rising fast, surpassing 100 million individuals (deBrauw et al., 2002) - Migrants also are moving further away from home and leaving for a longer period of time (Rozelle et al., 1999). - Most of China's migration is by individuals instead of entire households, in most cases the school-aged children of the migrant parents are being left.	Results from current literature - School performance of the migrant children is being adversely affected by migration since parental care falls with migration (Wang and Wu, 2003; Tan and Wang, 2004; Li, 2004; Zhou and Wu, 2004). - These results are all based on casual observation - Are they true? - Is there anything about migration that can offset this effects?
Objectives Examine the effect of migration activities of men and women on the educational performance of their children. - Compare the distribution of children's scores for different types of rural households and describe how the grades vary over time. - Examine whether migration negatively affects the school grades of rural children. - Explore how migration will affect children's educational performance in different types of households in terms of wealth or demographic composition.	Data - A data set collected in 2006, with information of changes in school performance of children before and after their parents outmigrated. - 1649 fifth grade students in 36 primary schools in 6 counties in Shaanxi province - Random sample of counties and schools within the counties and classes within the schools ... but surveyed ALL students within each class ...

