### ANNEX 4: Methodology of Economic Impact Assessment

| Some methodological issues on<br>programme evaluation/Impact<br>assessment<br>Linxiu Zhang<br>Center for Chinese Agricultural Policy<br>Chinese Academy of Sciences<br>CAU, Sept.24, 2007                                                                                                                                                                                                                                                                                                                                       | Content of presentation<br>• Introduction<br>• Evaluation methods<br>• Analytical methods<br>- PScore, DID<br>• Data collection<br>- Sampling<br>- Survey<br>• Example of method application                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | example                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>Measure the impact of a policy reform or intervention on well-defined outcome variables</li> <li>Examples:         <ul> <li>Childcare subsidy – child exam results</li> <li>Targeted training program – employment duration, earnings</li> <li>HPAI Outbreaks – impact on rural household livestock income or animal vaccination behaviour</li> </ul> </li> </ul>                                                                                                                                                      | <ul> <li>Impact assessment of parents' migration<br/>on child school performance in rural China</li> <li>Objective:<br/>Measure parents' migration decision on<br/>child's exam results</li> </ul>                                                                                                                                                                                                              |
| <ul> <li>Problems in programme evaluation</li> <li>Missing data problem: <ul> <li>Each person is either in the program or not (not BOTH): a child is either in a parent migrating family or non-migrating family</li> <li>There would be no evaluation problem if we can observe the outcome for those in the program had they NOT: if we have one child's exam results in both cases- during parents migrating period and not migrating period</li> <li>Central issue: how to construct counterfactual.</li> </ul> </li> </ul> | Selection Bias<br>• $E(Y_1 P=1) - E(Y_0 P=0)$<br>- P: whether parents migrated or not, 1=yes, 0=no<br>- Y1: treated outcome<br>• Y0: untreated outcome<br>• Add and subtract $E(Y0 P=1)$ , we have<br>$\{E(Y_1 P=1) - E(Y_0 P=1)\} + \{E(Y_0 P=1) - E(Y_0 P=0)\}$<br>- Average treatment effect on the treated Selection bias<br>If $E(Y_0 P=1) \neq E(Y_0 P=0)$ :<br>Selection bias: $E(Y_0 P=1) - E(Y_0 P=0)$ |

| Evaluation Methods <ul> <li>Randomized experiments</li> <li>Quasi-experiments: natural experiments</li> </ul>                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Randomized experiments</li> <li>Most convincing: there's a control group that is a random subset of the eligible population</li> <li>Randomized experiment in development<br/>Progresa (Mexico) Vouchers for private schooling in<br/>Columbia ( (Angrist et al. AER 2003)<br/>Merit scholarship program for girls in Kenya (Kremer,<br/>Miguel, and Thornton 2003)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identification with a randomized experiment         • Provides the correct counterfactual         • eliminates selfselection as a source of bias         • With randomized experiments:         • Programme impacts: $\hat{d} = E(Y Treated) - E(Y Control)$ - In regression: $Y_i = \alpha + d * P_i + s_i$ - Drawbacks of randomized experiments                                                                                                    | <ul> <li>Audit program of municipal expenditures in Brazil (Finan and Feraz 2006)</li> <li>2. Quasi-experiment/Natural Experiment [Experiment]</li> <li>Considers policy/program itself as an experiment and try to find a comparable experiment control group</li> <li>Identification problem: selection bias</li> <li>Programme participation not random <ul> <li>Earlier example:</li> <li>Whether a child coming from a migrating family is not random</li> <li>intuition: There is something systematically different about a child who is from a migration family (treated) compared to a child who is from a non-migration family (control), which is correlated with counterfactual outcome</li> <li>implication: biased impact measure</li> </ul> </li> </ul> |
| <ul> <li>Depends on what type of data you have:</li> <li>Singer cross-section (after programme implementation) <ul> <li>IV</li> <li>Two-step Heckman selection estimator</li> <li>Matching (Propensity-Score Matching)</li> </ul> </li> <li>Panel data (before-after programme)/multiple cross-section <ul> <li>difference-in-differences</li> <li>difference-in-difference matching</li> <li>Fixed effects (&gt; two periods)</li> </ul> </li> </ul> | <ul> <li>Identification strategy(2)</li> <li>if two groups are systematically different in characteristics, let's control for them as much as possible.</li> <li>Propensity score matching<br/>Controls for observable characteristics<br/>Only use outcome data for after program</li> <li>Difference-in-differences<br/>differences out some unobservable characteristics<br/>Utilize outcome data before-after program</li> <li>Difference-in-differences matching method<br/>Combines the two approaches<br/>Controls for observable and unobservable characteristics</li> </ul>                                                                                                                                                                                   |

| Brief introduction on method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Propensity Score Matching Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Propensity Score Matching Method</li> <li>Difference in differences</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Idea of matching <ul> <li>Directly compares individuals with similar values of observable characteristics (Xi)</li> <li>PSM compares individuals with similar probability of participation <ul> <li>P-score S(X<sub>i</sub>) = Pt(P = 1   X<sub>i</sub>)</li> </ul> </li> <li>Conditional Independence Assumption (CIA): <ul> <li>Matching in general: (Y<sub>0</sub> ⊥ P)   X</li> <li>PSM: (Y<sub>0</sub> ⊥ P)   S(X)</li> </ul> </li> </ul></li></ul>                                                                                              |
| More Words on PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | How PSM works                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>Inexact Matching</li> <li>It maps X into some lower dimension measure (index) that captures all important information in X, aka P-score</li> <li>P-score: the probability of receiving treatment conditional on entire space spanned by observables</li> <li>The P-Score Theorem: If P is randomly assigned condition on X, then P also is randomly assigned condition on S(X). <ul> <li>(Y<sub>0i</sub>, Y<sub>1i</sub>) ⊥ P<sub>i</sub>   X<sub>i</sub> ⇒ (Y<sub>0i</sub>, Y<sub>1i</sub>) ⊥ P<sub>i</sub>   S(X<sub>i</sub>)</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                | <ul> <li>Propensity scoring:<br/>Step 1: Estimate binary choice model that<br/>explains participation</li> <li>Step 2: Obtain the predicted probability of<br/>participation "propensity score"</li> <li>Step 3: Match participant and non-participant<br/>with similar propensity score</li> <li>Step 4: Compare the weighted averages</li> </ul>                                                                                                                                                                                                             |
| <ul> <li>Balancing property check of P-Score: stop adjusting the logit/probit model when the X's are similar for i with similar P-score</li> <li>Stratify sample into quintile blocks based on predicted p-score</li> <li>Within each quintile, compare X̄<sub>P=0</sub>, X̄<sub>P=1</sub>, test the difference using t-test</li> <li>If all tests (&gt;95% of tests) are insignificant, then conclude that the Logit/Probit function is "balancing" the observables (X), that is, statistically indistinguishable</li> <li>If covariate k in particular is not balanced for small blocks, divide them into smaller blocks and reevaluate</li> <li>If covariate k is not balanced for all blocks, modify the functional form by adding interactions or higher order polynomials in covariate k</li> <li>Stop change function form when you fail to reject more than 95% of the time</li> </ul> | <ul> <li>Matching method</li> <li>One-to-one matching         <ul> <li>Nearest neighbour matching</li> <li>With/without replacement</li> <li>Caliper matching: avoids "bad" matching by setting maximum distance allowed (2-5%)</li> </ul> </li> <li>One-to-multiple matching         <ul> <li>Kernel and local linear matching (non-parametric parametric methods)</li> <li>weights depend on the distance between each comparison group observation and the participant observation for which the counterfactual is being constructed</li> </ul> </li> </ul> |



| Data collection <ul> <li>Sampling</li> <li>Survey instruments</li> </ul>                                                                       | Sampling <ul> <li>To select samples with representativeness</li> <li>To include different population groups <ul> <li>Participating groups</li> <li>Control groups</li> </ul> </li> </ul> |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Survey<br>• Information for different periods<br>– Before - after<br>• Information for different groups<br>– Participating – non-participating | Example of impact assessment<br>• Impact of parents migration on child<br>grades                                                                                                         |
| Migration, Mentoring and Mothers<br>The Effect of Migration on Children<br>Educational Performance in Rural<br>China                           | Migration itself, nowever, is not costless.                                                                                                                                              |





### Table 2. DD Regression Results Analyzing the Effect of Migration on School Performance of Students in China

|      |                                                                             | (1)                        | (2)                          | (3)                       | (4)                         |
|------|-----------------------------------------------------------------------------|----------------------------|------------------------------|---------------------------|-----------------------------|
|      | Treatment Variable (MIG.)*                                                  | Restricted &<br>Unadjusted | Unrestricted &<br>Unadjusted | Restricted &<br>Adjusted" | Unrestricted &<br>Adjusted" |
| (1)  | Any_Parent_Migrated                                                         | 3.183<br>(3.72)***         | 2.327                        | 2.169<br>(2.58)**         | 1.164                       |
| Char | acteristics of the students in 2002                                         |                            | (0.007)                      | (2.00)                    | (1100)                      |
| (2)  | Student score in the second term in<br>2002 (Full score is 100)             |                            | -0.460<br>(14.93)***         |                           | -0.627<br>(18.04)***        |
| (3)  | Gender dummy (=1 if male and 0 if<br>female)                                |                            |                              | 0.826                     | -0.383 (0.75)               |
| (4)  | Age of the student in 2002 (Years)                                          |                            |                              | 0.097                     | -1.322                      |
| (5)  | Cadre dummy (=1 if the student was<br>a student cadre in 2002 and 0 if not) |                            |                              | -2.754                    | 1.168                       |
| (6)  | Mentor dummy (=1 if the student<br>had a mentor in 2002)                    |                            |                              | -1.051 (0.99)             | -0.972                      |
| (7)  | Sibling dummy (=1if the student had<br>no siblings in 2002)                 |                            |                              | 0.438 (0.55)              | 0.443 (0.71)                |
| har  | acteristics of the parents in 2002                                          |                            |                              | (0.55)                    | (0.71)                      |
|      |                                                                             |                            |                              | -0.066                    | -0.053                      |
| (8)  | Age of the father (Years)                                                   |                            |                              | (0.85)                    | (0.85)                      |
| (9)  | Level of education of the father<br>(Years of schooling)                    |                            |                              | -0.200 (1.06)             | -0.044 (0.35)               |
| (10) | Level of education of the mother<br>(Years of schooling)                    |                            |                              | 0.114 (0.77)              | 0.274                       |
| Char | acteristics of the household in 2002                                        |                            |                              | (0)                       | ()                          |
| an.  | Size of total household land holding                                        |                            |                              | 0.031                     | 0.037                       |
| (12) | Number of household members in                                              |                            |                              | (0.36)<br>0.078           | (0.57)<br>0.251             |
| (12) | 2002 (Person)<br>House value dummy (=1 if the                               |                            |                              | (0.25)<br>0.056           | (1.01)                      |
| (13) | house is worth more than 5000<br>yuan)                                      |                            |                              | (0.08)                    | (0.07)                      |
|      | Number of Observations                                                      | 1575                       | 1575                         | 1549                      | 1549                        |
| (15) | R-squared                                                                   | 0.01                       | 0.27                         | 0.10                      | 0.43                        |

# Table 2. DD Regression Results Analyzing the Effect of Migration on School Performance of Students in China

| Dependent Variable = Changes in Second Term Test Scores<br>between 2002 and 2006 ( <i>∆</i> Score) |                               |                                 |                       |                            |  |  |
|----------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------|-----------------------|----------------------------|--|--|
| Treatment Variable                                                                                 | (1)                           | (2)                             | (3)                   | (4)                        |  |  |
| (MIG <sub>i</sub> )                                                                                | Restricted<br>&<br>Unadjusted | Unrestricted<br>&<br>Unadjusted | Restricted & Adjusted | Unrestricted<br>& Adjusted |  |  |
| Any Parent Migrate                                                                                 | 3.183                         | 2.327                           | 2.169                 | 1.164                      |  |  |
| d                                                                                                  | (3.72)***                     | (3.03)***                       | (2.58)**              | (1.65)*                    |  |  |

### Table 3. DD Regression Results Analyzing the Effect of Migration on School Performance of Students in China by Household's Migration Status

|     |                                                     | Dependent Variable = Changes in Second Term Test Scores<br>between 2002 and 2006 ( <i>AScore</i> ) |              |              |                         |  |
|-----|-----------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------|--------------|-------------------------|--|
|     |                                                     | (1)                                                                                                | (2)          | (3)          | (4)                     |  |
|     | Treatment Variable (MIG <sub>i</sub> ) <sup>b</sup> | Restricted &                                                                                       | Unrestricted | Restricted & | Unrestricted            |  |
|     |                                                     | Unadjusted                                                                                         | & Unadjusted | Adjusted®    | & Adjusted <sup>°</sup> |  |
| (1) | Any_Parent_migrated,                                | 3.183                                                                                              | 2.327        | 2.169        | 1.164                   |  |
| (1) |                                                     | (3.72)***                                                                                          | (3.03)***    | (2.58)**     | (1.65)*                 |  |
| (2) | Father_Migrated_Only                                | 4.634                                                                                              | 3.812        | 3.630        | 2.356                   |  |
| (2) | (mother stayed home)                                | (4.27)***                                                                                          | (4.09)***    | (3.45)***    | (2.73)***               |  |
| (3) | Father_Migrated                                     | 3.812                                                                                              | 2.879        | 2.984        | 1.508                   |  |
| (3) | (Unconditional)                                     | (4.10)***                                                                                          | (3.52)***    | (3.24)***    | (1.98)**                |  |
| (4) | Mother_Migrated_Only                                | 0.839                                                                                              | 0.156        | -0.861       | -0.121                  |  |
| (4) | (father stayed home)                                | (0.45)                                                                                             | (0.08)       | (0.45)       | (0.07)                  |  |
| (5) | Mother_Migrated,                                    | 0.903                                                                                              | 0.444        | -0.147       | -0.541                  |  |
| (.) | (Unconditional)                                     | (0.73)                                                                                             | (0.37)       | (0.12)       | (0.48)                  |  |
| 6   | Dada a seconda a si seconda d                       | 1.367                                                                                              | 0.615        | 1.040        | -0.536                  |  |
| (6) | Both_parents_migrated                               | (0.79)                                                                                             | (0.38)       | (0.58)       | (0.35)                  |  |

#### Table 2. DD Regression Results Analyzing the Effect of Migration on School Performance of Students in China Dependent Variable = Changes in Second Term Tot Scores between 2002 and 2006 (*LScore*)

|      | Treatment Variable (MIG.)"            | (1)<br>Restricted &<br>Unadjusted | (2)<br>Unrestricted &<br>Unadjusted | (3)<br>Restricted &<br>Adjusted" | (4)<br>Unrestricted &<br>Adjusted" |
|------|---------------------------------------|-----------------------------------|-------------------------------------|----------------------------------|------------------------------------|
| (1)  | Any_Parent_Migrated                   | 3.183                             | 2.327                               | 2.169                            | 1.164                              |
|      |                                       | (3.72)***                         | (3.03)***                           | (2.58)**                         | (1.65)*                            |
| Char | acteristics of the students in 2002   |                                   |                                     |                                  |                                    |
| (2)  | Student score in the second term in   |                                   | -0.460                              |                                  | -0.627                             |
|      | 2002 (Full score is 100)              |                                   | (14.93)***                          |                                  | (18.04)***                         |
| (3)  | Gender dummy (=1 if male and 0 if     |                                   |                                     | 0.826                            | -0.383                             |
|      | female)                               |                                   |                                     | (1.28)                           | (0.75)                             |
| (4)  | Age of the student in 2002 (Years)    |                                   |                                     | 0.097                            | -1.322                             |
|      |                                       |                                   |                                     | (0.26)                           | (4.39)***                          |
| (5)  | Cadre dummy (=1 if the student was    |                                   |                                     | -2.754                           | 1.168                              |
|      | a student cadre in 2002 and 0 if not) |                                   |                                     | (3.83)***                        | (1.93)*                            |
| (6)  | Mentor dummy (=1 if the student       |                                   |                                     | -1.051                           | -0.972                             |
|      | had a mentor in 2002)                 |                                   |                                     | (0.99)                           | (1.26)                             |
| (7)  | Sibling dummy (=1if the student had   |                                   |                                     | 0.438                            | 0.443                              |
|      | no siblings in 2002)                  |                                   |                                     | (0.55)                           | (0.71)                             |
| Char | acteristics of the parents in 2002    |                                   |                                     |                                  |                                    |
| (8)  | Age of the father (Years)             |                                   |                                     | -0.066                           | -0.053                             |
|      |                                       |                                   |                                     | (0.85)                           | (0.85)                             |
| (9)  | Level of education of the father      |                                   |                                     | -0.200                           | -0.044 IL: aha                     |
| ~    | (Years of schooling)                  |                                   |                                     | (1.06)                           | (0.35) Highe                       |
| (10) | Level of education of the mother      |                                   |                                     | 0.114                            | 0.274 D                            |
|      | (Years of schooling)                  |                                   |                                     | (0.77)                           | (2.39)** R-squ                     |
| Char | acteristics of the household in 2002  |                                   |                                     |                                  | -                                  |
|      | Size of total household land holding  |                                   |                                     | 0.031                            | 0.037                              |
| (11) | in 2002 (mu)                          |                                   |                                     | (0.36)                           | (0.57) > 0.40                      |
| (12) | Number of household members in        |                                   |                                     | 0.078                            | 0.251                              |
| (+2) | 2002 (Person)                         |                                   |                                     | (0.25)                           | (1.01)                             |
|      | House value dummy (=1 if the          |                                   |                                     | 0.056                            | -0.037                             |
| (13) | house is worth more than 5000         |                                   |                                     | (0.08)                           | (0.07)                             |
|      | yuan)                                 |                                   |                                     |                                  |                                    |
| (14) | Number of Observations                | 1575                              | 1575                                | 1549                             | 1549                               |
| (15) | R-squared                             | 0.01                              | 0.27                                | 0.10                             | 0.43                               |

# Table 4. PSM and DDM Estimators and the Effect of Migration on the School Performance of Students in Rural China, 2002 and 2006

| Treatment Variable <sup>c d</sup> |                                 | Propensity Score Matching                |            | Difference-in-Difference<br>Matching |           |  |
|-----------------------------------|---------------------------------|------------------------------------------|------------|--------------------------------------|-----------|--|
| rreatment variable                |                                 | Average Treatmen<br>Effect for the Treat |            | Average Treatm<br>Effect for the Tre |           |  |
|                                   |                                 | (1)                                      |            | (2                                   | )         |  |
| Any_parent_migrated               | (1a) Basic Matching             | 1.16                                     | (1.02)     | 0.31                                 | (0.28)    |  |
|                                   | (1b) Multi-dimensional Matching | 1.57                                     | (1.60)     | 2.12                                 | (1.86)*   |  |
| Father_Migrated_Only              | (2a) Basic Matching             | 2.04                                     | (1.36)     | 1.12                                 | (0.77)    |  |
| (mother stayed home)              | (2b) Multi-dimensional Matching | 3.59                                     | (2.96) *** | 3.12                                 | (1.93)**  |  |
| Father_migrated,                  | (3a) Basic Matching             | 1.57                                     | (1.20)     | 2.35                                 | (1.93)**  |  |
| (Unconditional)                   | (3b) Multi-dimensional Matching | 2.19                                     | (2.04) *** | 2.52                                 | (1.99)*** |  |
| Mother_Migrated_Only              | (4a) Basic Matching             | -0.63                                    | (-0.22)    | -1.1                                 | (-0.39)   |  |
| (father stayed home)              | (4b) Multi-dimensional Matching | -0.94                                    | (-0.43)    | 1.93                                 | (0.58)    |  |
| Mother_migrated                   | (5a) Basic Matching             | -0.45                                    | (-0.26)    | -1.51                                | (-0.88)   |  |
| (Unconditional)                   | (5b) Multi-dimensional Matching | -0.46                                    | (-0.32)    | 0.82                                 | (0.48)    |  |
| Both parents migrated             | (6a) Basic Matching             | -0.22                                    | (-0.09)    | -0.56                                | (-0.23)   |  |
| boin_parents_migrated             | (6b) Multi-dimensional Matching | -0.28                                    | (-0.13)    | 0.97                                 | (0.43)    |  |

## Table 4. PSM and DDM Estimators and the Effect of Migration on the School Performance of Students in Rural China, 2002 and 2006

| Treatment Variable <sup>c d</sup> |                                 | Propensity Score Matching                                                 | Difference-in-Difference<br>Matching                        |
|-----------------------------------|---------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|
| Treatment variable                |                                 | Average Treatment t-value/<br>Effect for the Treated z-value <sup>b</sup> | Average Treatment t-value<br>Effect for the Treated z-value |
|                                   |                                 | (1)                                                                       | (2)                                                         |
| Any_parent_migrated               | (1a) Basic Matching             | 1.16 (1.02)                                                               | 0.31 (0.28)                                                 |
|                                   | (1b) Multi-dimensional Matching | 1.57 (1.60)                                                               | 2.12 (1.86)*                                                |
| Father_Migrated_Only              | (2a) Basic Matching             | 2.04 (1.36)                                                               | 1.12 (0.77)                                                 |
| (mother stayed home)              | (2b) Multi-dimensional Matching | 3.59 (2.96) ***                                                           | 3.12 (1.93)**                                               |
| Father_migrated,                  | (3a) Basic Matching             | 1.57 (1.20)                                                               | 2.35 (1.93)**                                               |
| (Unconditional)                   | (3b) Multi-dimensional Matching | 2.19 (2.04)***                                                            | 2.52 (1.99)***                                              |
| Mother_Migrated_Only              | (4a) Basic Matching             | -0.63 (-0.22)                                                             | -1.1 (-0.39)                                                |
| (father stayed home)              | (4b) Multi-dimensional Matching | -0.94 (-0.43)                                                             | 1.93 (0.58)                                                 |
| Mother_migrated                   | (5a) Basic Matching             | -0.45 (-0.26)                                                             | -1.51 (-0.88)                                               |
| (Unconditional)                   | (5b) Multi-dimensional Matching | -0.46 (-0.32)                                                             | 0.82 (0.48)                                                 |
| Both parents migrated             | (6a) Basic Matching             | -0.22 (-0.09)                                                             | -0.56 (-0.23)                                               |
| boin_parents_migratea             | (6b) Multi-dimensional Matching | -0.28 (-0.13)                                                             | 0.97 (0.43)                                                 |

